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Abstract. The aim of this paper is to clarify the conceptual difference which exists between the interactions
of composite bosons and the interactions of elementary bosons. A special focus is made on the physical
processes which are missed when composite bosons are replaced by elementary bosons. Although what is
here said directly applies to excitons, it is also valid for composite bosons in other fields than semiconductor
physics. We, in particular, explain how the two elementary scatterings – Coulomb and Pauli – of our many-
body theory for composite excitons, can be extended to a pair of fermions which is not an Hamiltonian
eigenstate – as for example a pair of trapped electrons, of current interest in quantum information.

PACS. 71.35.-y Excitons and related phenomena

In the 50’s, theories have been developed to treat
many-body effects between quantum elementary particles,
fermions or bosons, and their representation in terms of
Feynman diagrams has been quite enlightening to grasp
the physics involved in the various terms. This many-body
physics is now well explained in various textbooks [1–4].

While these theories have allowed a keen understand-
ing of the microscopic physics of electron systems, a fun-
damental problem remains up to now in the case of bosons
because essentially all particles called bosons are compos-
ite particles made of an even number of fermions. Vari-
ous attempts have been made to get rid of the underly-
ing fermionic nature of these bosons, through procedures
known as “bosonizations” [5]. By various means, their
main goal is to find a convincing way to trust the final re-
placement of a pair of fermions — for the simplest of these
bosons — by an elementary boson, their fermionic nature
being hidden in “effective scatterings”, which supposedly
take care of possible exchanges between the fermions from
which these composite bosons are made.

A few years ago [6–8], we have decided to tackle the
problem of interacting composite bosons, with as a main
goal, to find a way to treat their interactions without re-
placing them by elementary bosons, at any stage. It is
clear that a many-body theory for composite bosons is
expected to be more complex than the one for elementary
bosons. However, the new diagrammatic representation we
have recently constructed [9], greatly helps to understand
the processes involved in the various terms, by making
transparent the physics they contain.

The main difficulty with interacting composite parti-
cles is the concept of interaction itself. A first — rather
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simple — problem is linked to the fact that, fermions be-
ing indistinguishable, there is no way to know with which
fermions these composite particles are made. As a direct
consequence, there is no way to identify the elementary
interactions between fermions which have to be assigned
to interactions between composite bosons: Indeed, if we
consider two excitons made of two electrons (e, e′) and
two holes (h, h′), there are six elementary Coulomb inter-
actions between them: Vee′ , Vhh′ , Veh, Ve′h′ , Veh′ and Ve′h.
While (Vee′ + Vhh′) is unambiguously a part of the in-
teraction between the two excitons, (Veh′ + Ve′h) is the
other part if we see the excitons as made of (e, h) and
(e′, h′), while this other part is (Veh +Ve′h′) if we see them
as made of (e, h′) and (e′, h). This ambiguity means that
there is no clean way to transform the interacting part of
an Hamiltonian written in terms of fermions, into an inter-
action between composite bosons. From a technical point
of view, this is dramatic, because, with the Hamiltonian
not written as H0 + V , all our background on interacting
systems, which basically relies on perturbation theory at
finite or infinite order, has to be given up, so that new
procedures [10] have to be constructed from scratch, to
calculate the physical quantities at hand.

A second problem with composite bosons made of
fermions, far more vicious than the first one, is linked to
Pauli exclusion between the fermion components. While
Coulomb interaction, originally a 2 × 2 interaction, pro-
duces many-body effects through correlation, Pauli exclu-
sion produces this “N -body correlation” at once, even in
the absence of any Coulomb process. In the case of many-
body effects between elementary fermions, this Pauli “in-
teraction” is hidden in the commutation rules for fermion
operators, so that we do not see it. It is however known
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to be crucial: Indeed, for a set of electrons, it is far
more important than Coulomb interaction, because it is
responsible for the electron kinetic energy which domi-
nates Coulomb energy in the dense limit. When com-
posite bosons are replaced by elementary bosons, the ef-
fect of Pauli exclusion is supposedly taken into account
by introducing a phenomenological “filling factor” which
depends on density. In our many-body theory for compos-
ite bosons, this Pauli exclusion appears in a microscopi-
cal way through a dimensionless exchange scattering from
which can be constructed all possible exchanges between
the N composite bosons.

Since our many-body theory for composite bosons is
rather new and not well known yet, many people still
thinking in terms of bosonized particles with dressed in-
teractions, it appears to us as useful to come back to the
concept of interaction for composite bosons, because it is
at the origin of essentially all the difficulties encountered
with their many-body effects, when one thinks in a con-
ventional way, i.e., in terms of elementary particles.

The goal of this paper is (i) to carefully study the inter-
actions between two and three composite bosons, in order
to clarify the set of physical processes which are missed by
any bosonization procedure, whatever the choice made for
the effective scatterings is, (ii) to show how the two concep-
tually different scatterings of our new many-body theory
for composite excitons, namely Coulomb and Pauli, can be
extended to other types of composite bosons, in particular
the ones which are not Hamiltonian eigenstates.

This paper is organized as follows:
In a first section, we briefly recall how elementary par-

ticles interact. We also recall a few simple ideas on their
many-body physics.

In a second section, we consider composite bosons
made of two different fermions. We will call them “elec-
tron” and “hole”, having in mind, as a particular example,
the case of semiconductor excitons. We physically analyse
what can be called “interactions” between two and be-
tween three of these composite bosons. We then show how
these physically relevant “interactions” can be associated
to precise mathematical quantities constructed from the
microscopic Hamiltonian written in terms of fermions.

In a third section, we discuss, on general grounds, the
limits of what can be done when composite bosons are
replaced by elementary bosons [11,12], in order to identify
which kind of processes are systematically missed.

In a last section, we show a natural extension of the
ideas of our many-body theory for composite excitons to
composite bosons which are not exact eigenstates of the
Hamiltonian, for example a pair of trapped electrons, of
current interest in quantum information [13,14].

This paper is definitely not a precise application of our
new approach to any specific physical problem. In various
publications [10,15,16], we have already shown that our
exact approach produces terms which are missed when
composite excitons are replaced by elementary bosons
with dressed interactions, these terms being all linked
to a weak treatment of carrier exchanges. Since our ap-
proach now provides a clean and secure way to tackle

problems dealing with composite boson many-body ef-
fects, it appears to us as useful to clarify the conceptual
breakthrough our theory provides in problems of high cur-
rent interest, like the Bose-Einstein condensation of exci-
tons [17,18] and the semiconductor optical nonlinearities
in semiconductors — since photons interact with a semi-
conductor through the virtual excitons to which they are
coupled.

1 Interaction between elementary bosons

Let us call |̄i〉 = B̄†
i |v〉 a one-elementary-boson state, its

creation operator B̄†
i being such that

[B̄m, B̄†
i ] = δm,i. (1.1)

The concept of interaction between these elementary
bosons is associated to the idea that, if two of them, ini-
tially in states i and j, enter a “black box”, they have
some chance to get out in different states m and n (see
Fig. 1a). In the “black box”, one or more interactions can
take place (see Figs. 1b, 1c). Moreover, since the bosons
are indistinguishable, there is no way to know if the boson
i becomes m or n, so that the elementary process (1b) has
to be the sum of the two processes shown in Figure 1d.

From a mathematical point of view, the interaction
between elementary bosons appears through a potential
in their Hamiltonian, which reads

V̄ =
1
2

∑
mnij

ξ̄eff
mnij B̄†

mB̄†
nB̄iB̄j , (1.2)

with
ξ̄eff
mnij = ξ̄eff

nmij , (1.3)

due to the boson undistinguishability and

ξ̄eff
mnij =

(
ξ̄eff
ijmn

)∗
, (1.4)

due to the necessary hermiticity of the Hamiltonian.
To make a link between what will be said in the fol-

lowing on composite bosons, it is of interest to note that,
if the system Hamiltonian H̄ reads H̄ = H̄0 + V̄ , with
H̄0 =

∑
i Ēi B̄†

i B̄i and V̄ given by equation (1.2), we have

[H̄, B̄†
i ] = Ēi B̄†

i + V̄ †
i , (1.5)

with V̄ †
i |v〉 = 0, while

[V̄ †
i , B̄†

j ] =
∑
mn

ξ̄eff
mnij B̄†

mB̄†
n . (1.6)

This leads to an Hamiltonian matrix element in the two-
boson subspace given by

〈v|B̄mB̄nHB̄†
i B̄

†
j |v〉 = 2[(Ei + Ej) δmnij + ξ̄eff

mnij ] , (1.7)

the scalar product of two-elementary-boson states being
such that

〈v|B̄mB̄nB̄†
i B̄

†
j |v〉 = 2δmnij = δm,iδn,j + δm,jδn,i . (1.8)



M. Combescot and O. Betbeder-Matibet: How composite bosons really interact 471

(1a)

n

m

j

i

(1b) (1c)

n

m i

j m

n

j

i

+

(1d)

p
n
m

k
j
i

(1e) (1f)

Fig. 1. (a) (resp. (e)): basic diagrams for the interactions of
two (resp. three) elementary bosons. Between two composite
bosons, one, two, or more interactions can exist as in (b) and
(c), while two interactions at least are necessary (see (f)) to
find three composite bosons in “out” states (m, n, p) different
from the “in” states (i, j, k). Due to the boson undistinguisha-
bility, the elementary scattering between two bosons must be
invariant under a (m ↔ n) and/or a (i ↔ j) permutation, as
shown in (d).

If we now have three bosons entering the “black box”, two
interactions at least are necessary, in order to find these
bosons out of the box, all three in a state different from the
initial one (see Figs. 1e, 1f). Since ξ̄eff

mnij has the dimension
of an energy, the second scattering of this two-interaction
process has to appear along with an energy denominator.

2 Interactions between composite bosons

We now consider a composite boson made of two different
fermions. Let us call them “electron” and “hole”. The case
of composite bosons made of a pair of identical fermions
will be considered in the last part of this work. We label
the possible states of this composite boson by i.

2.1 Two composite bosons

We start by considering two composite bosons in states i
and j. From a conceptual point of view, an “interaction” is

a physical process which allows to bring these bosons into
two different states, m and n. What can possibly happen
in the “black box” of Figure 2a, to produce such a state
change?

2.1.1 Pure carrier exchange

The simplest process is, for sure, just a carrier exchange,
either with the holes as in Figure 2b, or with the electrons
as in Figure 2c. Since the two are physically similar, we
expect them to appear equally in a scattering λmnij based
on this pure exchange (see Fig. 2d). It is of interest to
note that the electron exchange of Figure 2c is equivalent
to a hole exchange, with the (m, n) states permuted (see
Fig. 2c’).

If this carrier exchange is repeated, we see from Fig-
ure 2e that two hole exchanges reduce to an identity, i.e.,
no scattering at all, while a hole exchange followed by
an electron exchange results in a (m, n) permutation, i.e.,
again no scattering at all for indistinguishable particles
(see Fig. 2f).

Let us now show how we can make appearing the λmnij

exchange scattering formally. In view of Figure 2d, this
scattering has to read

2λmnij = λ
(

n
m

j
i

)
+ λ

(
m
n

j
i

)
, (2.1)

where λ
(

n
m

j
i

)
corresponds to the hole exchange of Fig-

ure 2b, the excitons m and i having the same electron,

λ
(

n
m

j
i

)
=∫

dre drh dre′ drh′ 〈n|re′rh〉〈m|rerh′〉〈rerh|i〉〈re′rh′ |j〉 ,

(2.2)

where 〈rerh|i〉 is the wave function of the one-boson state
|i〉. Note that the prefactor 2 of equation (2.1), which
could be included in the definition of the Pauli scatter-
ing, is physically linked to the fact that two exchanges are
possible in an electron-hole pair, namely a hole exchange
and an electron exchange. It is of interest to note that, in
the case of one electron and one exciton, as in problems
dealing with trions, these Pauli scatterings appear with-
out any prefactor 2 because the exciton can only exchange
its electron with the electron gas.

If these one-boson states are orthogonal, 〈m|i〉 = δm,i,
it is tempting to introduce the deviation-from-boson op-
erator Dmi defined as

Dmi = δm,i − [Bm, B†
i ], (2.3)

where B†
i is the creation operator for the one-boson state

|i〉 = B†
i |v〉. For δm,i = 〈m|i〉, this operator is such that

Dmi|v〉 = 0, (2.4)
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Fig. 2. (a) Basic diagram for the interaction of two compos-
ite bosons made of an electron (solid line) and a hole (dashed
line). (b) Elementary hole exchange λ

(
n j
m i

)
between the “in”

composite bosons (i, j) and the “out” composite bosons (m,
n). (c) Elementary electron exchange between the same com-
posite bosons as the ones of (b). As shown in (c’), this electron
exchange is equivalent to a hole exchange with (m, n) changed
into (n, m). (d) Due to the undistinguishability of the fermions
forming the composite bosons, the elementary Pauli scattering
λmnij between two composite bosons must be invariant under
a (m ↔ n) and/or (i ↔ j) permutation. Due to (c, c′), this
Pauli scattering must include a hole exchange and an electron
exchange. (e) Two hole exchanges reduce to an identity. (f)
One hole exchange followed by an electron exchange reduces
to a (m, n) permutation: indeed, the resulting composite bo-
son m is made with the same fermions as j. Note that all these
exchange processes are missed when composite bosons are re-
placed by elementary bosons.

while its commutator with another boson creation opera-
tor makes appearing the exchange or Pauli scatterings we
want, through

[Dmi, B
†
j ] = 2

∑
n

λmnij B†
n , (2.5)

as easy to see by calculating the scalar product of the
two-boson states 〈v|BmBnB†

i B
†
j |v〉, using either the set of

commmutators (2.3, 5) or the two-composite-boson wave
function,

〈re′rh′ , rerh|B†
i B

†
j |v〉 =

1
2

[〈rerh|i〉〈re′rh′ |j〉 − 〈re′rh|i〉〈rerh′ |j〉 + (i ↔ j)] .

(2.6)

This wave function is indeed invariant by (i ↔ j), as im-
posed by B†

i B
†
j = B†

jB
†
i for B†’s being products of fermion

operators. It also changes sign under a (re, re′ ) exchange,
as required by Pauli exclusion.

This leads to

〈v|BmBnB†
i B

†
j |v〉 = 2[δmnij − λmnij ]. (2.7)

This equation actually shows that the two-composite-
boson states are nonorthogonal. This is just a bare conse-
quence of the fact that these composite-boson states form
an overcomplete basis [19]: Indeed, the composite-boson
creation operators B†

i are such that

B†
i B

†
j = −

∑
mn

λmnij B†
mB†

n , (2.8)

easy to show by combining the fermion pairs in a different
way.

Due to B†
i B

†
j = B†

jB
†
i , equation (2.7) also shows that

λmnij = λmnji = λ∗
ijmn . (2.9)

Finally, from the closure relation for one-boson states,∑
i |i〉〈i| = I, it is easy to check that two exchanges reduce

to an identity, i.e.,
∑
rs

λmnrsλrsij = δmnij , (2.10)

with δmnij given in equation (1.8), as physically expected
from Figures 2e, 2f.

2.1.2 Direct and exchange Coulomb scatterings

If the two fermions are charged particles, another way for
these two composite bosons to interact is via Coulomb
interaction between their carriers. The simplest of these
interactions is a set of direct processes in which the out
excitons (m, n) are made with the same pair as the “in” ex-
citons (i, j) (see Figs. 3a, 3b). However, here again, as the
carriers are indistinguishable, these processes must appear
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Fig. 3. (a) Elementary direct Coulomb scattering ξ
(

n j
m i

)
be-

tween two composite bosons. (b) In this direct Coulomb scat-
tering, enter the e–e, h–h as well as two e–h Coulomb inter-
actions. (c) Due to the undistinguishability of the fermions
forming the composite bosons, the direct Coulomb scattering
ξmnij between two composite bosons must be invariant un-
der a (m ↔ n) and/or (i ↔ j) permutation, so that it is
composed of two elementary direct Coulomb scatterings. (d)
The “in” Coulomb scattering ξin

mnij corresponds to a direct
Coulomb scattering followed by a carrier exchange. As shown
in (d’), the electron-hole Coulomb interaction of ξin

mnij is be-
tween the “in” composite bosons, but inside the “out” ones. (e)
The “out” Coulomb scattering ξout

mnij corresponds to a carrier
exchange followed by a direct Coulomb interaction. (f) Pro-
cesses in which the direct Coulomb interaction is followed by
two hole exchanges reduce to a direct process. (g) Processes
in which the hole exchanges are on both sides of the Coulomb
direct interaction are physically strange because their electron-
hole parts are “inside” both, the “in” and the “out” composite
bosons, so that they are already counted in these composite
bosons: We never find these strange processes appearing in
physical quantities resulting from many-body effects between
composite bosons.

in a scattering in which m and n are not differentiated, as
in Figure 3c.

In view of Figures 3a, 3c, this direct Coulomb scatter-
ing must read

2ξmnij = ξ
(

n
m

j
i

)
+ ξ

(
m
n

j
i

)
, (2.11)

where, due to Figure 3a, ξ
(

n
m

j
i

)
is given by

ξ
(

n
m

j
i

)
=

∫
dre drh dre′ drh′ 〈n|re′rh′〉〈m|rerh〉

× V (rerh; re′rh′) 〈rerh|i〉〈re′rh′ |j〉 ,

V (rerh; re′rh′) = Vee(re, re′) + Vhh(rh, rh′)
+ Veh(re, rh′) + Veh(re′ , rh) . (2.12)

The potential V (rerh; re′rh′) is just the sum of the
Coulomb interactions between an electron-hole pair made
of (e, h) and an electron-hole pair made of (e′, h′). Note
that, this Coulomb scattering being direct, the interactions
are between both, the “in” composite bosons (i, j) and the
“out” composite bosons (m, n). From equations (2.11, 12),
we see that this direct Coulomb scattering is such that

ξmnij = ξnmij = (ξijmn)∗ . (2.13)

Let us now make appearing this direct Coulomb scatter-
ing ξmnij in a formal way. If the one-boson states |i〉 are
eigenstates of the Hamiltonian, i.e., if

(H − Ei)B†
i |v〉 = 0 , (2.14)

it is tempting to introduce the “creation potential” V †
i

defined as
V †

i = [H, B†
i ] − EiB

†
i . (2.15)

Due to equation (2.14), this operator is such that

V †
i |v〉 = 0 . (2.16)

If, as for the Pauli scattering λmnij , we consider the com-
mutator of this “creation potential” with another boson
creation operator, we make appearing the direct Coulomb
scatterings we want, through

[V †
i , B†

j ] =
∑
mn

ξmnij B†
mB†

n . (2.17)

The derivation of this result, without taking an explicit
form of the Hamiltonian, is however not as easy as the one
for λmnij , namely equation (2.5), because, due to the over-
completeness of the composite-boson states which follows
from equation (2.8), the ξmnij scattering of equation (2.17)
can as well be replaced by (−ξin

mnij), where ξin
mnij is an ex-

change Coulomb scattering defined as, (see Fig. 3d),

ξin
mnij =

∑
rs

λmnrs ξrsij . (2.18)
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Consequently, this direct scattering ξmnij cannot be re-
lated to a precise matrix element as simply as for λmnij

in equation (2.7). Indeed, if we consider the matrix ele-
ment of the Hamiltonian H between two-composite-boson
states, we find, depending if H acts on the right or on the
left,

〈v|BmBnHB†
i B

†
j |v〉 = 2[(Ei + Ej)(δmnij − λmnij)

+(ξmnij − ξin
mnij)]

= 2[(Em + En)(δmnij − λmnij)

+(ξmnij − ξout
mnij)] , (2.19)

where ξout
mnij is also an exchange Coulomb scattering, this

time defined as, (see Fig. 3e),

ξout
mnij =

∑
rs

ξmnrs λrsij . (2.20)

Due to equation (2.19), these two exchange Coulomb scat-
terings, ξin and ξout, are linked by

ξin
mnij − ξout

mnij = (Em + En − Ei − Ej)λmnij , (2.21)

while, due to equations (2.9, 13), they are such that

ξin
mnij = ξin

nmij =
(
ξout
ijmn

)∗
. (2.22)

From the definitions of ξmnij and λmnij and the closure
relation for one-boson states, the “in” exchange scatter-
ing ξin

mnij , shown in Figure 3d, in fact reads as ξmnij with
〈n|re′rh′〉〈m|rerh〉 replaced by 〈n|re′rh〉〈m|rerh′〉. We see
that ξin

mnij contains electron-hole Coulomb interactions
which are between the “in” states (i, j), but no more be-
tween the “out” states (m, n) (see Fig. 3d’).

In the same way, the “out” exchange scattering ξout
mnij ,

shown in Figure 3e, reads as ξmnij with 〈rerh|i〉〈re′rh′ |j〉
replaced by 〈rerh′ |i〉〈re′rh|j〉; so that its electron-hole
Coulomb interactions are between the “out” states (m, n)
but no more between the “in” states (i, j).

ξin
mnij and ξout

mnij are Coulomb scatterings with one ex-
change. If we now consider two exchanges, we can think
of them either on the same side as in Figure 3f or on both
sides as in Figure 3g. Two exchanges reducing to an iden-
tity, if these two exchanges are on the same side, it is just
the same as no exchange at all. On the opposite, if they are
on both sides, we end with something very strange from
a physical point of view. Indeed, the scattering shown in
Figure 3g reads

∫
dre drh dre′ drh′ 〈n|re′rh′〉〈m|rerh〉

× [Vee(re, re′ ) + Vhh(rh, rh′) + Veh(re, rh)
+ Veh(re′ , rh′)] 〈rerh|i〉〈re′rh′ |j〉 . (2.23)

So that the electron-hole interactions Veh are not between
the composite bosons of any side. Being “inside” both
composite bosons, these Veh interactions are already in-
cluded in the composite bosons themselves. Consequently,

there is no physical reason for them to appear once more in
a scattering between these composite particles. This leads
us to think that this type of exchange Coulomb scatter-
ing should not appear in the final expression of physical
many-body quantities involving composite bosons. And,
indeed, they do not appear in the problems we have up to
now considered.

It is of importance to stress that there is only one phys-
ically reasonable Coulomb scattering between composite
bosons, namely ξmnij , because its electron-hole parts are
unambiguously interactions between the composite bosons
on both sides. The relevant way to see the two other
Coulomb scatterings, ξin

mnij and ξout
mnij , is as a succession of

a (direct) Coulomb scattering before or after a carrier ex-
change. ξmnij and λmnij actually form the two elementary
scatterings, necessary to describe any kind of interaction
between composite bosons. ξin

mnij and ξout
mnij are just two,

among many other possible combinations of these two el-
ementary scatterings. This is going to become even more
transparent for the interactions between three composite
bosons.

2.2 Three composite bosons

We now consider what can be called interaction in the
case of three composite bosons, i.e., what physical pro-
cesses can transform the composite bosons (i, j, k) into
the composite bosons (m, n, p) (see Fig. 4a). If there is
no common state between (i, j, k) and (m, n, p), all three
composite bosons have to be “touched” in some way by
this interaction, in order to change state.

2.2.1 Pure carrier exchange

As for two composite bosons, the simplest “interaction”
between three composite bosons is surely a carrier ex-
change. A possible one is shown in Figure 4b, with some
of its equivalent representations shown in Figures 4c, 4d:
It is easy to check that, in these three diagrams, the com-
posite boson p is made with the same electron as j and
the same hole as k.

We can think of drawing diagram (4b) with the elec-
tron/hole lines exchanged. As shown in Figure 4e, this is
however equivalent to a permutation of the boson indices:
Indeed, in the two diagrams of this figure, the m boson
has the same electron as j and the same hole as i.

It is also of interest to note that the “Shiva diagram”
for three-body exchange shown in Figure 4b can actually
be decomposed, in various ways, into carrier exchanges
between two composite bosons only: Indeed, diagram (4c)
can be drawn as (4f) and diagram (4d) as (4g), so that

λ


p k

n j
m i


 =

∑
r

λ

(
n k
p r

)
λ

(
r j
m i

)
=

∑
s

λ

(
n s
m i

)
λ

(
p j
s k

)
(2.24)
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Fig. 4. (a) Basic diagram for the interaction of three com-
posite bosons. (b) “Shiva diagram” for the carrier exchange
of three composite bosons. This diagram can be redrawn as in
Figures (c, d): in all these diagrams, the m composite boson has
the same electron as i and the same hole as j. (e) The Shiva di-
agram with the electron-hole lines exchanged corresponds to a
permutation of the boson indices. The Shiva diagram between
three composite bosons (b) can be drawn as a succession of
carrier exchanges between two composite bosons. Indeed, (c)
is nothing but (f), while (d) is nothing but (g). (h) Due to
the undistinguishability of the fermions forming the compos-
ite bosons, the elementary Pauli scattering λmnpijk between
three composite bosons must be invariant under a (m,n, p)
and/or (i, j, k) permutation. It thus contains the 6 × 2 = 12
processes shown on this figure. Note that, in the case of elemen-
tary bosons, two Coulomb interactions at least are necessary to
have all three bosons changing state, so that the pure exchange
processes shown in this figure are systematically missed when
composite bosons are replaced by elementary bosons.

Since the composite bosons are made with indistinguish-
able particles, such a three-body exchange must however
appear in a symmetrical way through a scattering λmnpijk

which must read

3! 2! λmnpijk = λ


p k

n j
m i


 + 11 similar terms , (2.25)

obtained by permutating (m, n, p) and (i, j, k) (see fig.4h),
all the other positions of (m, n, p) and (i, j, k) being topo-
logically equivalent to one of these 3!2! terms. On that
respect, it is of interest to note that the factor of 2, in
the definition (2.1) of the Pauli scattering between two
composite bosons λmnij , is just 2!1!. Due to Figure 4b,
the elementary exchange between three composite bosons
simply reads

λ


p k

n j
m i


 =

∫
d{dr} 〈p|re′rh′′〉〈n|re′′rh〉

× 〈m|rerh′〉〈rerh|i〉〈re′rh′ |j〉〈re′′rh′′ |k〉 . (2.26)

This three-body Pauli scattering λmnpijk in particular
appears in the scalar product of three-composite-boson
states,

〈v|BmBnBpB
†
i B

†
jB

†
k|v〉 =

δmnpijk − 2(δm,iλnpjk + 8 permutations) + 12λmnpijk ,
(2.27)

with δmnpijk = δm,iδn,jδp,k +5 permutations, as possi-
ble to check either directly from the explicit value of the
composite boson wave function, or by using a commutator
technique based on equations (2.3, 5) and on

3λmnpijk =
∑

r

[λmnriλprjk + λmnrjλprik + λmnrkλprij ] ,

(2.28)
which makes use of equation (2.24).

2.2.2 One Coulomb scattering

If we now consider processes with one Coulomb scatter-
ing only, it is necessary to have one additional exchange
process at least, to possibly “touch” the three composite
bosons: See for example the process of Figure 5a, which
precisely reads

∑
s

λ
(
p
n

k
s

)
ξ
(

s
m

j
i

)
=

∫
{dr} 〈p|re′′rh′〉〈n|re′rh′′〉〈m|rerh〉

× V (rerh; re′rh′) 〈rerh|i〉〈re′rh′ |j〉〈re′′rh′′ |k〉. (2.29)

Of course, we can also have one Coulomb and two ex-
changes, as obtained by adding one Coulomb interaction
in the three-body Shiva diagram of Figure 4b (see Fig. 5b):
in the process of Figure 5b, the “out” composite bosons
are all constructed in a different way, while in the one of
Figure 5a, one composite boson, among the three, stays
made with the same fermions.
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Fig. 5. Processes in which enters one direct Coulomb scat-
tering. In order to have all three composite bosons changing
state, these processes must also contain one (a) or two (b) car-
rier exchanges. Note that such processes with one Coulomb
interaction only do not exist for elementary bosons, so that
they are systematically missed when composite bosons are re-
placed by elementary bosons.

2.2.3 Two Coulomb scatterings

Finally, as in the case of elementary bosons, it is also pos-
sible to “touch” the three composite bosons (i, j, k) by
two direct Coulomb processes, as in Figure 6a. Of course,
additional fermion exchanges can take place, if the “in”
and “out” bosons are made with different pairs. From a
topological point of view, the processes in which the three
“out” composite bosons are made with different pairs can
be constructed from the Shiva diagram of Figure 4b, with
the two direct Coulomb scatterings being a priori at any
position, i.e., on the same side as in Figures 6b, 6c, or
on both sides as in Figure 6d. On the opposite, processes
in which one “out” composite boson is made with the
same fermions as one of the “in” composite bosons can be
constructed from the exchange diagram of Figure 2b, one
of the two direct Coulomb scatterings having however to
“touch” this unchanged pair, as in Figures 6e, 6f, in order
to have this composite boson changing state.

2.3 Some general comments based on dimensional
arguments

The qualitative analysis of what can possibly happen to
two or to three composite bosons has led us to draw
very many possible processes able to make them chang-
ing states. It is however of importance to note that all
these complicated processes can be constructed just with
two elementary scatterings, λ

(
n
m

j
i

)
and ξ

(
n
m

j
i

)
, i.e., a

m

n

p k

j

i

(6a)

(6d)

(6b) (6c)

(6e) (6f)

Fig. 6. Processes in which enter two Coulomb interactions,
either through direct scatterings as in (a), or through a mix-
ture of direct and exchange processes as in (b–f). All these
processes can be written in terms of the two elementary scat-
terings for composite bosons, namely the direct Coulomb scat-
tering ξ

(
n j
m i

)
and the Pauli scattering λ

(
n j
m i

)
.

pure fermion exchange and a clean direct Coulomb inter-
action between two composite bosons — which is the only
Coulomb process which is between the composite bosons
of both sides, unambiguously.

ξ
(

n
m

j
i

)
is a scattering in the usual sense, i.e., it has the

dimension of an energy. This in particular means that each
time a new ξ

(
n
m

j
i

)
appears in a physical quantity, a new

energy denominator has also to appear; on the opposite,
λ

(
n
m

j
i

)
is an unconventional “scattering” because it is

dimensionless. In addition, depending on the way a new
Pauli scattering appears, it can either “kill” the preceding
one as in equation (2.10), or help to mix more composite
bosons as in equation (2.27).

With respect to the possible goals of a many-body cal-
culation, this makes them playing very different roles. If
the relevant energies are the detunings — as in problems
dealing with optical nonlinearities — the energy denomi-
nator which appears with a new ξ

(
n
m

j
i

)
is a sum of de-

tunings, so that, for unabsorbed photons, i.e., large de-
tunings, we just have to look for processes in which enters
the smallest amount of ξ’s.

If we are interested in density effects, this is more sub-
tle. The dominant terms at small density are dominated by
processes in which enters the smallest amount of particles,
i.e., diagrams with the smallest amount of lines. In the case
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of elementary bosons, we need one scattering to connect
two lines, two scatterings to connect three lines, and so
on . . . (see Figs. 1b, 1f), so that each new line goes with a
new energy denominator. This is no more true for compos-
ite bosons: Indeed, we can connect lines in the absence of
any Coulomb scattering, as in Figure 4b. Moreover, while,
with exchanges alone, to connect two lines we need one
Pauli scattering and to connect three lines we need two,
these Pauli scatterings have to be put in very specific posi-
tions, otherwise they “destroy”themselves. Consequently,
in order to generate a density expansion in a system of
composite bosons, the number of ξ or λ scatterings is not
a relevant quantity. Instead, we must start with the appro-
priate number of composite-boson lines (two for terms at
lowest order in density, three for the next order terms, and
so on . . . ) and construct the possible connections between
these lines, using λ

(
n
m

j
i

)
and/or ξ

(
n
m

j
i

)
.

Of course, all this can be qualified of wishful thinking
or handwaving arguments. These qualitative remarks are
however of great help to identify the physics we want to
describe through its visualization in a new set of “Shiva
diagrams”. A hard mathematical derivation of all these
intuitive thinkings can always be recovered by calculat-
ing the physical quantity at hand, expressed in terms of
composite boson operators, through matrix elements like
〈v|BmN · · ·Bm1 f(H)B†

i1
· · ·B†

iN
|v〉. To calculate such a

quantity, we first push the Hamiltonian depending quan-
tity f(H) to the right, using [f(H), B†

i ] which can be
deduced from equations (2.15, 17) for any function f .
This makes appearing a set of direct Coulomb scatterings
ξ
(

n
m

j
i

)
. The remaining scalar products of N -composite-

boson states are then calculated using equations (2.3, 5).
This makes appearing a set of Pauli scatterings λ

(
n
m

j
i

)
.

Note that, in this procedure, the ξ’s are all together on
the right, while the λ’s are all together on the left (or
the reverse if we push f(H) to the left). This in particu-
lar avoids spurious mixtures of ξ’s and λ’s like the one of
Figure 3g.

3 Conceptual problems with bosonization

It is of course an appealing idea to try to find a way to
replace composite bosons by elementary bosons, because
well known textbook techniques can then be used to treat
their many-body effects. In view of Section 2, it is however
clear that such a replacement raises various problems:

(i) While elementary-boson states are orthogonal, the
composite boson ones are not (see Eqs. (2.7, 27)).

(ii) This is linked to the fact that, while elementary-
boson states form a complete set, the set of composite-
boson states is overcomplete.

(iii) Only one elementary scattering between two ele-
mentary bosons exists, namely ξeff

mnij . In the case of com-
posite bosons, we have identified three scatterings hav-
ing the dimension of an energy, namely ξmnij , ξin

mnij and
ξout
mnij , plus one dimensionless scattering λmnij , all these

scatterings being possibly constructed on a hole exchange
λ

(
n
m

j
i

)
and a direct Coulomb scattering ξ

(
n
m

j
i

)
. Con-

sequently, between composite bosons, there are two fully
independent scattering processes, the elementary bosons
having one only.

(iv) While all the complicated processes which can ex-
ist with three composite bosons can be decomposed in
terms of ξ

(
n
m

j
i

)
and λ

(
n
m

j
i

)
, it is necessary to introduce

additional interaction potentials between three elementary
bosons in the Hamiltonian, if we want to take them into
account. And so on, if we are interested in processes in-
volving four, five, . . . bosons, as necessary for higher order
terms in the density.

Among all these problems, the overcompleteness of
composite-boson states is for sure the major one because
we are not used to work with an overcomplete basis. Let
us consider it first.

3.1 Nonorthogonality and overcompleteness

These two problems are of course linked, the overcomplete-
ness generating the nonorthogonality of the composite-
boson states. However, the overcompleteness is far more
difficult to handle. Just to grasp the difficulty, consider a
2D plane. To represent it, we can use the standard orthog-
onal basis (x,y) but we can as well use any two vectors
(x′,y′) which are not colinear. From them, we can either
construct two orthogonal vectors, for example (x′′,y′),
with x′′ = x′ − (x′ · y′)y′, or we can just keep them. This
will make the algebra slightly more complicated because
x′.y′ �= 0, but that’s all. If it now happens that three
vectors of the 2D plane, (x′,y′, z′) are equally relevant,
so that there is no good reason to eliminate one, then we
must find a good way to mix them in order to produce
two vectors out of three, which can serve as a basis for the
2D plane.

In the case of bosons, the space dimension is of course
infinite, as well as the number of “unnecessary” states,
so that the proper way to make such a space reduction
cannot be an easy task. On that respect, to face the over-
completeness of the composite-boson states and to handle
it up to the end as we do, seems to us a very secure way
to control all the difficulties linked to the boson composite
nature.

If we only consider the problem of nonorthogonality,
we can think to overcome it by considering a physically rel-
evant N -composite-boson state, for example |0〉 = B†N

0 |v〉,
with all the bosons in the same state (this state is close
to the N -composite-boson ground state). We can then
replace the other composite-boson states, for example
|I〉 = B†

i B
†N−1
0 |v〉, by their component perpendicular to

|0〉, namely |I ′〉 = P⊥B†
i B

†N−1
0 |v〉, where

P⊥ = 1 − |0〉〈0|
〈0|0〉 . (3.1)

This helps partly only, because, even if we now have
〈0|I ′〉 = 0, these |I ′〉 states are not really good in the
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sense that they do not form an orthogonal set: we still
have 〈J ′|I ′〉 �= 0. This remaining nonorthogonality can be
unimportant in problems in which the 〈J ′|I ′〉 scalar prod-
ucts do not appear — for example, if they correspond to
“higher order terms”. However, even in these cases, such
a construction of an orthogonal set is not fully satisfac-
tory, when compared to handling the nonorthogonality,
properly.

3.2 “Good” effective scattering

Our study of the interactions between two composite
bosons makes appearing four scatterings: ξmnij , ξin

mnij ,
ξout
mnij and λmnij . Let us, for a while, accept the idea to

have bosonized particles which form an orthogonal set, so
that the pure Pauli scatterings do not play a role, i.e., we
drop all the λmnij ’s. We are left with three scatterings
having the dimension of an energy. An idea for a “good”
effective scattering between elementary bosons can be to
impose the same Hamiltonian matrix elements within the
two-boson subspace. However, in view of equations (1.8)
and (2.19), we are in trouble if we keep dropping the
λmnij ’s, because we can choose either ξmnij − ξin

mnij or
ξmnij − ξout

mnij , these two quantities being equal for Em +
En = Ei + Ej only, due to equation (2.21). If, instead, we
decide to keep the λmnij ’s for a while, we are led to take

ξ̂eff
mnij = ξmnij −

[
ξin
mnij + (Ei + Ej)λmnij

]
, (3.2)

with the bracket possibly replaced by[
ξout
mnij + (Em + En)λmnij

]
; so that we can rewrite

this effective scattering, in a more symmetrical form, as

ξ̂eff
mnij =

ξmnij − 1
2

[
ξin
mnij + ξout

mnij + (Em + En + Ei + Ej)λmnij

]
.

(3.3)

We note that this ξ̂eff
mnij is such that ξ̂eff

mnij =
(
ξ̂eff
ijmn

)∗
, as

necessary for the hermiticity of the effective Hamiltonian
for elementary bosons. If we now drop the Pauli scatter-
ings λmnij ’s, we are led to take

ξeff
mnij = ξmnij − (ξin

mnij + ξout
mnij)/2 , (3.4)

which preserves the hermiticity of the Hamiltonian. This
has to be contrasted with the effective scattering for
bosonized excitons extensively used by the semiconductor
community [11,12], namely ξmnij−ξout

mnij , as first obtained
by Hanamura and Haug, following an Inui’s bosonization
procedure [20].

Before going further, let us note that, in dropping the
λmnij term in ξ̂eff to get ξeff , we actually “drop” a quite
unpleasant feature of this effective scattering: its spurious
dependence on the band gap in the case of excitons. In-
deed, in ξ̂eff

mnij appears the sum — not the difference — of
the “in” and “out” boson energies. In the case of excitons,

this boson energy is essentially equal to the band gap plus
a small term depending on the exciton state at hand. So
that Em + En + Ei + Ej is essentially equal to four times
the band gap. Its possible appearance in a scattering is a
physical nonsense.

All this leads us to conclude that the only “reasonable”
scattering between two elementary bosons — which has
the dimension of an energy, preserves hermiticity and has
no spurious band gap dependence — should be ξeff

mnij .
Actually, even this ξeff

mnij is not good, except may be for
effects in which only enter first order diagonal Coulomb
processes — in order for the “in” and “out” Coulomb scat-
terings to be equal. Indeed, in a previous work [10], we
have shown that the link between the inverse lifetime of
an exciton state — due to exciton-exciton interations —
and the sum of its scattering rates towards a different exci-
ton state, misses a factor of 2, if the excitons are replaced
by elementary bosons, whatever is the effective scattering
used — a quite strong statement! We have recently recov-
ered this result [21] without calculating the two quantities
explicitly, but just by using an argument based on differ-
ences in the closure relations of elementary and composite
excitons.

Let us now come back to the problem of having the
Pauli scatterings systematically missing in any approach
which uses an effective bosonic Hamiltonian. This is ac-
tually far worse than the problem of choosing a “good”
exchange part for Coulomb scattering, because, with this
dropping, we not only miss a factor of 2, but the domi-
nant term [15,16] in all optical nonlinear effects! Indeed, a
photon interacts with a semiconductor through the virtual
exciton to which this photon is coupled. If the semiconduc-
tor already has excitons, the first way this virtual exciton
interacts is via Pauli exclusion, since this exclusion among
fermions makes it filling all the fermion states already oc-
cupied in the sample. Coulomb interaction comes next,
since it has to come with an energy denominator which,
in problems involving unabsorbed photons, is a detuning,
so that these Coulomb terms always give a negligible con-
tribution at large detuning, in front of the terms coming
from Pauli scatterings alone.

Beside the exciton optical Stark effect, in which the
roots of our many-body theory for composite excitons can
be found [22], we have studied some other optical non-
linearities in which the interaction of a composite exci-
ton with the matter is dominated by Pauli scattering,
namely the theory of the third order nonlinear suscep-
tibility χ(3) [16], the theory of Faraday rotation in pho-
toexcited semiconductors [23] and the precession of a spin
pined on an impurity induced by unabsorbed photons [24].

Since this Pauli scattering, quite crucial in many phys-
ical effects, is dimensionless, it cannot appear in the ef-
fective Hamiltonian of bosonized particles, which needs
a scattering having the dimension of an energy. Conse-
quently, all terms in which this scattering appears alone,
i.e., not mixed with Coulomb processes, are going to be
missed by any procedure using an effective bosonic Hamil-
tonian. (Note that this is also true for any approach using
a spin-spin Hamiltonian [13]).
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Finally, our qualitative discussion on the possible in-
teractions between three composite bosons, has led us to
identify, in addition to pure exchange processes based on
Pauli scattering between three composite bosons, again
missed, more complicated mixtures of Coulomb and ex-
change than the one appearing between two composite
bosons, ξin

mnij and ξout
mnij . In order not to miss them, we

could think of adding a three-body part to the Hamilto-
nian like

V̄ ′ =
1
3!

∑
mnpijk

ξ̄eff
mnpijk B̄†

mB̄†
nB̄†

pB̄iB̄jB̄k . (3.5)

Let us however note that the proper identification of
ξ̄eff
mnpijk with the three-body processes not constructed

from ξmnij , ξin
mnij and ξout

mnij , is quite tricky, because this
three-body potential formally contains terms in which one
elementary boson can stay unchanged, i.e., terms already
included in V̄ .

All this actually means that the “good” effective
bosonic Hamiltonian, apart from the pure Pauli terms
which are going to be missed anyway, has to be more and
more complicated if we want to include processes in which
more and more bosons are involved, i.e., if we want to
study many-body effects, really. Just for that, the replace-
ment of composite bosons by elementary boson seems to
us far more complicated than keeping the boson composite
nature through a set of Pauli scatterings, as we propose.

4 Extension to more complicated composite
bosons

In the preceding sections, we have considered composite
bosons made of a pair of different fermions, these pairs be-
ing eigenstates of the Hamiltonian. In this last section, we
are going to show how we can generalize the definitions of
the various scatterings we have found, to pairs of fermions
which are not eigenstates of the Hamiltonian. For clarity,
we are going to show this generalization on a specific ex-
ample of current interest: a composite boson made of a
pair of trapped electrons [13,14].

Let us consider two electrons with two traps located at
R1 and R2. These traps can be semiconductor quantum
dots, Coulomb traps such as ionized impurities, H atom
protons, and so on. . . The system Hamiltonian then reads

H = H0 + Vee + WR1 + WR2 , (4.1)

where H0 is the kinetic contribution, Vee the electron-
electron Coulomb interaction and WR the potential of the
trap located at R. The physically relevant one-electron
states [24] are the one-electron eigenstates in the pres-
ence of one trap located at R, namely |Rµ〉 given by
(H0 + WR − εµ)|Rµ〉 = 0. They are such that

|Rµ〉 = a†
Rµ|v〉 =

∑
k

〈k|Rµ〉 a†
k|v〉 , (4.2)

a†
k being the creation operator for a free electron with

momentum k. In the case of Coulomb trap, the |Rµ〉 states
are just the H atom bound and extended states.

We now consider the two-electron states having one
electron on each trap,

|n〉 = A†
n|v〉 = a†

R1µ1
a†
R2µ2

|v〉 , (4.3)

where the index n stands for (µ1, µ2). These states do not
form an orthogonal set since, due to the finite overlap of
the one-electron wave functions, we do have

〈n′|n〉 = δn′,n − λ
(e−e)
n′n , (4.4)

where λ
(e−e)
n′n = 〈R1µ

′
1|R2µ2〉 〈R2µ

′
2|R1µ1〉. This possible

carrier exchange between the two traps, shown in Fig-
ure 7a, produces not only the nonorthogonality of the |n〉
states, but also the overcompleteness of this set of states.
Indeed, by exchanging the electrons between the traps R1

and R2, we can show that

A†
n = −

∑
n′

λ
(e−e)
n′n A†

n′ . (4.5)

If we now want to determine the Pauli scatterings of this
composite boson made of a pair of trapped electrons, we
are led to define the deviation-from-boson operator Dn′n
through

Dn′n = 〈n′|n〉 − [An′ , A†
n] , (4.6)

which is a generalization of equation (2.3) to the case of
nonorthogonal composite bosons. Indeed, with such a def-
inition, we still have the crucial property of a deviation-
from-boson operator, namely Dn′n|v〉 = 0. The Pauli scat-
terings of the composite boson A†

n with another composite
boson B†

i is then obtained through

[Dn′n, B†
i ] = 2

∑
i′

λ
(ee−X)
n′i′ni B†

i′ . (4.7)

In a case of current interest, namely the spin manipula-
tion by a laser pulse [13,14,25,26], the relevant bosons B†

i
with which the pair of trapped electrons interact, are the
virtual excitons coupled to the photons. This composite
boson B†

i , made of an electron-hole pair can exchange its
electron with one of the two electrons of the composite
boson A†

n, through the Pauli scattering λ
(ee−X)
n′i′ni shown in

Figure 7b. This is why we have defined it with a 2 prefac-
tor in equation (4.7).

We now look for the scatterings of the composite
bosons A†

n having the dimension of an energy. For that,
we first note that H0 +WR can be written in terms of the
a†
Rµ’s defined in equation (4.2), as [24]

H0 + WR =
∑

µ

εµ a†
RµaRµ , (4.8)

where εµ is the energy of the one-electron state |Rµ〉. This
leads to

H |n〉 = En|n〉 +
∑
n′

ξ
(e−e)
n′n |n′〉 , (4.9)
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Fig. 7. (a) Pauli scattering λ
(e−e)
n′n between two electrons

trapped in R1 and R2. In this exchange, the electrons can
end in trapped states n′ = (µ′

1, µ
′
2) different from the initial

ones n = (µ1, µ2). (b) Pauli scattering λ
(ee−X)
n′i′ni between a com-

posite boson made of a trapped electron pair and a composite
boson made of an electron-hole pair, i.e., more precisely a com-
posite exciton, their states changing from (n, i) to (n′, i′). (c)

Direct scattering ξ
(e−e)
n′n between two trapped electrons. This

scattering contains the Coulomb interaction between the two
electrons as well as the interactions of each electron with the
potential of the other trap. (d) Direct scattering ξ

(ee−X)

n′i′ni be-
tween a composite boson made of a trapped electron pair and
a composite exciton. This scattering contains the Coulomb in-
teraction of the exciton with each of the two trapped electrons.

where En = εµ1 + εµ2 is the “free” energy of the pair of
trapped electrons, while ξ

(e−e)
n′n , shown in Figure 7c, comes

from their Coulomb repulsion as well as from the interac-
tion of each electron with the other trap.

For such composite bosons A†
n, which, due to equa-

tion (4.9), are not eigenstates of the Hamiltonian, the
proper way to define their “creation potential” is through

V †
n = [H, A†

n] − EnA†
n −

∑
n′

ξ
(e−e)
n′n A†

n′ , (4.10)

in order to still have V †
n |v〉 = 0, equation (4.10) being a

generalization of equation (2.15). We then get the “direct
Coulomb scattering” between the composite boson A†

n and
another composite boson B†

i , through

[V †
n , B†

i ] =
∑
n′i′

ξ
(ee−X)
n′i′ni A†

n′B
†
i′ , (4.11)

which is similar to equation (2.17). This direct scatter-
ing is shown in Figure 7d. It corresponds to the direct
Coulomb interaction of each of the two trapped electrons
with the electron-hole pair of the exciton.

Using this set of commutators and the two scatterings
λ

(e−e)
n′n and ξ

(e−e)
n′n they generate, we are going to calcu-

late the energy of two trapped electrons with their possi-
ble exchanges included exactly, in order to determine the
singlet-triplet splitting these exchange processes induce in
the van der Waals energy. Using them and the two scat-
terings between the trapped pair and an exciton, λ

(ee−X)
n′n

and ξ
(ee−X)
n′n , we are also going to calculate the splitting of

the trapped electron pair energy induced by virtual exci-
tons coupled to a laser beam, which results from electron
exchanges between the trapped pair and the electron of
the virtual exciton. This last problem is of great current
interest for the control of the spin transfer time between
two traps using a laser pulse, with, in mind, its possible
use for quantum information [27].

5 Conclusion

In this paper, we have made a detailed qualitative analysis
of what can be called “interaction” between two or three
composite bosons. We have shown that all the processes
which produce a change in the boson states, can be written
in terms of two scatterings only: a direct Coulomb scatter-
ing which has the dimension of an energy and a pure Pauli
“scattering” which is dimensionless. This Pauli scattering
is actually the novel ingredient of our many-body theory
for composite bosons in which these composite bosons are
never replaced by elementary bosons.

We can possibly think of including processes in which
enter complicated mixtures of direct Coulomb scatterings
and Pauli scatterings, through a set of effective scatterings
between two, three, or more elementary bosons. On the op-
posite, all processes in which the Pauli scatterings appear
alone have to be missed if one uses effective Hamiltoni-
ans such as the ones in which the composite bosons are
replaced by elementary bosons, or any spin-spin Hamil-
tonian, whatever the effective coupling is. This, in par-
ticular, happens in all semiconductor optical nonlineari-
ties, the virtual exciton coupled to the photon field feeling
the presence of the fermions present in the sample, “even
more” than their charges.

Finally, we have shown how to extend the mathe-
matical definitions of the Pauli scattering and the di-
rect Coulomb scattering to non trivial composite bosons
which are not eigenstates of the Hamiltonian, such as
a pair of trapped electrons. This extension again goes
through the introduction of “deviation-from-boson oper-
ators” and “creation potentials”, the main characteristic
of these quantities being to give zero when they act on
vacuum, so that they really describe interactions with the
rest of the system.

Although it is easy to understand the reluctance one
may have to enter a new way of thinking interactions be-
tween composite bosons, it appears to us as worthwhile
to spend the necessary amount of time to grasp these new
ideas, in view of their potentiality in very many problems
of physics.
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